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Abstract

The techniques of Lie group analysis can be used
to determine absolute invariant functions which
serve as classifier functions in object recognition
problems. Lie group analysis is a powerful tool
for analyzing complex systems such as the conser-
vation model used in recent thermophysical invari-
ance (TPI) research. We will discuss the mathe-
matics of Lie groups and the application to recog-
nition problems (TPI specifically). The experi-
mental results will demonstrate the validity of the
methods and determine the direction of future re-
search. More extensive background and results are
available in an extended version of this paper.

1 Introduction

In a nutshell here’s what these techniques provide
and how they can be used in classifying objects:
Lie group analysis will determine if there exists
a non-trivial function ® which assumes a con-
stant value on the set of all roots of an equation
f(2) = 0. The form of the equation remains con-
stant regardless of which particular object we are
measuring (viewing), but some of the coefficients
in this equation may (and generally will) change
depending upon the object being viewed, as for
example when f(Z) = 0 expresses a conservation
equation. As a result, the set of roots will differ
depending upon the object being viewed. Corre-

*For extended development of the concepts in this paper
contact any of the authors.

spondingly the constant value ®(2) will assume
a different value depending upon the object being
viewed, thus permitting the use of ® as a classifier
function.

In section 2, the mathematics involved are pre-
sented, and in section 3 these ideas are applied to
the thermophysical invariance problem where the
equation f(Z) = 0 is a conservation statement.
Finally, some of the theory is confirmed by exper-
imental data and future directions are discussed.

2 Elements of Lie Group Analysis

We explain the theory of Lie Group Analysis as
applied to an equation of the form

f(£)=0 (1)
where Z = (z1,...,2,) € R" and f is a differ-

entiable function, f € C'(R). Denote the set of
roots of f by

V= (Fewf =0} ()
If the differential df £ 0 VZ € V(f) then f implic-
itly defines a manifold. We assume this manifold
to be connected!. Lie group analysis will deter-
mine continuous symmetries only; if the manifold
is not connected discrete symmetries may exist
and cannot be determined by the methods con-
sidered here. An example of a discrete symme-
try is reflection. In the physical applications we
consider in object recognition problems, discrete

' A manifold M is connected if to each pair of points in
M there exists a curve in M connecting the two points.



symmetries are not an issue. lhe variables under
consideration vary continuously.

The concepts and theory given here can be ex-
tended to deal with differential equations - and
this is where Lie group analysis is used most often.
The generalization of these techniques to differen-
tial equations is not difficult. See Olver [1993] for
such a treatment.

In general, Lie group analysis is applicable for sys-
tems of equations, however7 any system of equa-
tions ¢g; = 0 for 1 = 1,. m can be replaced by a
single equation f = E ", g% =0 in the sense that
Vi(g1,...,9m) = V(f). Hence there is no loss of
generality in assuming only one equation.

2.1 Curves and Groups of
Transformations

A curve in R” is a differentiable function
p IR
e (0,...,qp)
where I C ® is an open interval and «; € R for
i =1,...,n. A curve in V(f) is a curve in "
whose image lies in V' (f).

If (¢'...,¢") is a vector field on R (so Qo=
©'(Z)) then for each fixed ¢
we= (oL, . M) € CHR™) x ... x CHR™),
n factors
so each . determines a transformation map of R”
given by
pe ¢ R R
= (9e(2), .-, ¢E (D).

As g varies over [ this determines a family of trans-
formations {¢: }eey.

If we define the evaluation function at Z as

ez ¢ CYR™) x ... x C'R") = "

n factors
(fryoo s fu) = (D), ..., fu(D)
then for a fixed ¢,
0e(2) = exlpe) = (02(8), .., pL() €R"

As ¢ varies over I this determines a curve by
Ve (Z) = €z(pe) I— R

t (@1 (2),. .., 91 (D).
In this definition Z is treated as a fixed constant.

As Z varies over R”, @4(Z) determines a family of
curves, {¢e¢(%) }zemn, one for each point z € R”.

The set of transformations {¢.(e)}.c; has a nat-
ural binary operation defined on it given by com-
position

7= pe(ps(2))-

A group of transformations {p.(e)}ecr is a set of
transformations such that the operation of com-
position satisfies

i. associativity, v. - (¢s5-¢~y) = (- ©5) - ¢oy
ii. there exist an identity element o, and
iii. each element in {¢.(-)}ccs has an in-

verse.

Pe * Ps

The transformation ¢.(e) is a parameterized
transformation of R”. Since it has a single param-
eter, the group of transformations {¢.(e)}ees is
called a one-parameter group of transformations.

A one-parameter Lie Group is a group which also
carries the structure of a 1-dimensional differen-
tiable manifold. This additional structure on a
group allows the ability to speak of continuity and
differentiability.

2.2 Tangent Vectors and Vector Fields

A tangent vector consist of a vector part and a
point of application. We denote a tangent vector
by vz = (v1,vs,.. vn) where (v1,vg,...,v,) is
“the vector part” and 7 is the point of application.

If ¢ is a curve then %|5:acps determines a tangent
vector at @,.

Each tangent vector vz determines a map by

by. + CYR™) > R

d -
_|5:0f(2 + €Vg)

f'_>d5

where
ok (?Rn) = The set of differentiable functions on R".

For brevity we simply write

V() = o f(7 4 2v2)

It is an easy exercise to show that vz(f) =
Llezof(Z+evs) = Lo f(p(e)) for any curve
o through the point Z satisfying %|6:0992 (e) = v

Lemma l Let v =

field and f € C*(R"™).
(f) =

(v1,02,...,v,) be a vector

Then
>

Proof: Apply the chain rule.

By this lemma it is meaningful to write

13} 13} 13}

=Wy Unpyy>
0z "0z ’”azn)f
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Thus a tangent vector, and therefore vector fields
as well, can be viewed as either an ordered n—tuple
or as an operator. It is this ability to view tangent
vectors (vector fields) from both perspectives that
makes them so powerful.

2.3 Killing Fields and Infinitesimal
Generators

The set of vector fields over R"™ consisting of ele-

ments
v = (v1,v2,...,05)

v = UZ(Z) € Cl(%n)
form a module over the ring C''(R") with scalar
multiplication being componentwise. Since

gv  CHR™) = CT(RY)
f=gv(f)

where

where
R — R
Z (g(D)va) f

the set of all vector fields satisfying
v(f)=0

form a submodule since

v(if)=0&s(f)=0= (v+s)f =

and

(gv)f

v(f)+s(f) =0

v(f)=0and g € C*(R") = (gv)f = 0.

The elements of this submodule are called the
killing fields of f. (In more standard terminol-
ogy, these elements are annihilators. The descrip-
tor “killing fields” is more telling of there role and
will be employed here.) A collection of basis ele-
ments for this submodule are called infinitesimal
generators.

Since the infinitesimal generators form a basis
for the killing fields of f, every vector field v
such that v(f) = 0, with infinitesimal generators
{n',...,n""1}, can be written uniquely as

n—1 o
v = Zgznz
=1

for some ¢' € C'(R") fori=1,...,n—1

2.4 Computation of Groups of
Transformations from the
Infinitesimal Generators

Groups of transformations can be calculated from
the infinitesimal generators by the following

Ll heorem & if Pel2) 1S acurvein vif) anda v 1is
a vector field satisfying d%( ) — = v (p.(2)) fori=
1,...,n then v(f) = 0. Conversely, if d% dee(d)

vi(p(2)) fori=1,. m, pe(Z) = Z € V(f) and
v(f) =0 then 99.(2’) is a curve in V(f).

The process of solving the equations to determine
a group of transformations determined by the vec-
tor field v is called the process of exponentiation.
dei(9)
;; - = (¢.(5)
fore=1,.

—

0o(%) = %

Corollary 3 Let v be a vector field satisfying
v(f) = 0. FEach infinitesimal generator of v de-
termines a curve in V(f).

Corollary 4 Let {p.}.cn be a group of transfor-
mations of V(f) determined by the process of ex-

ponentiating. If f(Z) =0 then f(p-(2)) = 0.

The conclusion of Corollary 4 is really just a tau-
tology since a group of transformations of V(f)

means if € V(f) then ¢.(2) € V(f).
2.5 The Group of Symmetries, Sy y)

We have observed that for an infinitesimal gener-
ator ' of a vector field v satisfying v(f) = 0, the
solution to

de- (%)

o) el =7

determines a group of transformations. If g €
C*(R") then g¢g'v* is a vector field such that
¢'v'(f) = 0 and the solution to

WD _ g w9 =2

determines a curve in V(f), and hence a group of
transformations of V (). More generally, since the
infinitesimal generators {n',..., 7™} form a basis
for the vector fields v satisfying v(f) = 0, then
for any collection of functions

g e CtR)

it follows n-1
(Z glvl) f=

—
so the solution to the system of differential equa-

tions (Z . )

determines a curve in V(f), and hence a group of
transformations of V(f).

dsz .
S” po(Z) = 2




1T'he setl oI all such transtormations determined
by this equation is the group of symmetries of
V(f), denoted by Sy s). Clearly it is the smallest
group containing all of the groups “generated” by
the infinitesimal generators {n',...,n"~1} as sub-
groups. Furthermore any transformation of V (f)
can be determined by solving such a system of
equations.

2.6 Invariant Functions and their
Calculation

Suppose we are given the equation f = 0. Let
(@2, 2) = (%)

be the Sy (s)—action on V(f). Then Sy s acts on
hom(V (f),R) in a natural way

' o Sy X hom(V(f),R) = hom(V(f), R)
(¢ @) = o+ @

where
V(f)— R
7 @(p:(2)).

e x D

Definition 5 An element ® € hom(V(f),R) is
an Sy (py—invariant of hom(V (f), R) if ® is invari-
ant under the action of Sy sy on hom(V (f),R). In
other words, the stabilizer of ® is Sy (y)

{Pe € Sy (p) e x @ = O} = Sy(y)

It is an elementary exercise in algebra to show

Theorem 6 Let Sy (s be a group acting on a set
hom(V(f),R). An element ® € hom(V(f),R)
is an absolute Sy (py~invariant of hom(V (f), %) if
and only if

D(pe(2) = @(2)

Proof. See [Arnold et al., 1997].

V. € Sv(f).

This necessary and sufficient condition is often
taken as the definition of an absolute invariant
function. Though the definition of an invariant

element of the set hom(V(f),R) should be ex-

pressed in terms of the more fundamental action

(e 2) = 0e(2)

The following theorem gives a necessary and suffi-
cient condition for such an absolute invariant func-
tion.

1 heorem ( Leln jori1=1,...,n— 1 0€e lhe in-
finitesimal generators for the killing fields of f.
Then ® € hom(V(f),R) is an absolute Sy y)-
invariant function if and only if n,(®) = 0 for
1=1,...,n—1.

Proof. See [Arnold et al., 1997].

3 Lie group analysis in Object
Recognition

Several attempts at recognizing object material
types using thermophysical invariance theory have
been reported recently. Lie group analysis has
been applied to each of the different models, in-
cluding the true differential form found in previ-
ous papers [Michel et al., 1997]. The following
example began with the formulation presented in
[Nandhakumar et al., 1997], in which the radiation
term was linearized and embedded into h. Further
modifications (discussed below) simplified the Lie
group analysis.

Ts - Tzn
f=WacosO+h(To—T5)+ K Tt
Yy

This model does not contain the energy storage
term present in the previous models. Removal
of this term allows the conservation statement to
become a conservation of heat flux statement as
opposed to the conservation of energy statement
used before. A key reason for this fundamental
shift is to find a model where the terms are inde-
pendent.

= 0. (3)

A thorough analysis of the invariants of equation
(3) requires the application of Lie group analysis.
Consider the conservation equation (3) modeled
algebraically by

Y1+ Y2 Yz — Y2 a1 + ag a1y5y4:0 (4)
where

a = T Surface temperature

ay = k Thermal conductivity

y1 = W «a cos® | Solar absorption

y2 = h Heat transfer coeflicient

ys = Two Ambient temperature

Ya = Ting Internal temperature

ys = Ay Depth into the material
(along the path of conduction)

The a; variables are measurable (or guessed) in a
recognition scenario and the y; variables are not.
Ideally we would like to find a function of the a;
variables which is an invariant.

In general, W can not be measured, while avcos ©
can be estimated. However, for the experiment



discussed 1n the next section the entire term,
Wacos O, is measured. Also, ay and y5 are con-
stant, therefore we will have 4 transformation
groups after using the equations presented in Sec-
tion 2.

Generator Transformation
U1 nn—yte
s
4y — ay + wus—az
—@2\f L @2
v2 y2 = (2 = 2)e 1 2
ay — (a1 —y3)e ™ +y3
U3 Yys+—yst+e¢
Yoys
= ot g
Uy Yg—>Yst+ ¢
—ay
4= o+ e

Table 1: Infinitesimal Generators and the cor-
responding Groups of Transformations.
Note: the variables not listed un-
der a Transformation Group undergo
the identity transformation. All these
transformations are global Lie groups.

The only function invariant under all the transfor-
mation groups is
ay — Ya
O =gy +y2 Y3 — Y2 a1 + ag ] (5)

Ys
where g is an arbitrary function. Hence, analyt-

ically, there are no non-trivial invariant functions
for (3)! It remains to be determined if additional
constraints can be found empirically such that use-
ful quasi-invariants can be found.

4 Experimental Validation of the
Group of Transformations

To check the groups of transformations found in
the above application, experimental data from
a thermocouple data collection performed at
Wright-Patterson Air Force Base was used to de-
termine the transformation from one data point A,
to another data point B. The “ground truth” data
consisted of temperature measurements acquired
from thermocouples implanted in various types
of materials placed in an outdoor scene and col-
lected over a period of 2 weeks in mid-November.
The collection includes varying weather conditions
and has extensive records of the atmospheric pres-
sure, ambient temperature, lighting conditions,
etc. Multiple temperature measurements of sod,
clay, gravel, concrete, asphalt, and aluminum were
recorded every 15 minutes and provide rough esti-
mates of all the variables in the conservation equa-
tion.

Currently, we measure and estimate all the param-
eters except h. Although we could also estimate

1, we currently derive 1t Irom the other estimates
and the conservation statement. We plan on esti-
mating h in the future, but for this example, we
found it was more useful to derive h for two rea-

SOns
1. We can check for reasonable bounds on h to

verify when our model is working correctly.
2. By forcing the conservation equation to be
true at each time, the transformation groups

are better illustrated.
Once we have formed data points for each material

at various instances in time, we can verify that our
transformation groups work by solving for each ¢
and applying it to the surface temperature (using
the appropriate transformation). If the transfor-
mations form a group (as they should), the con-
servation equation will hold before and after each
step. By applying each of the four transforma-
tions, we can move between any two points in the
group.

The missing parts of figure 1 correspond to times
when the physics-based model was determined to
break down. We removed these points for now
since the model is not yet robust enough to con-
sider all the different methods of heat transfer. As
the model is improved, we will be able to show re-
sults for all times and include other factors such
as rain, shadows, and transpiration. Ideally an ex-
tended time period of data will be used for classi-
fication since the material characteristics may be
masked at any point by transient or induced ef-
fects. Only after collecting an extended period of
data could one feel confident in a determination
of the materials being viewed.

As previously discussed, we forced the conserva-
tion statement to hold by solving for h at each
point. If h is estimated, then the resulting con-
servation statement will not be exactly zero, say
f(2) = 6. The elements of the group of symme-
tries would then satisfy f(p(2)) = 0. A classifier
would be designed to determine the threshold for
which a point is considered in the class or outside
the class. This is similar to the hypothesize and
verify scheme suggested in previous papers [Nand-
hakumar et al., 1997]. However, since we can not
measure all these parameters, and since we have
shown non-trivial invariants do not exist, we need
to look for new formulations of the model and/or
quasi-invariants.

5 Discussion
5.1 New physics-based models

Another area of research is the model of the con-
servation equation. The current model was de-
rived to characterize “typical” data, with no claim
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Figure 1: (a) 3 days of the solar radiation and conduction terms are shown. During the day, solar
heating is clearly a dominant effect. (b) The surface temperature of asphalt before and after
a 2 hour transformation is shown. The 2nd curve is shifted back 2 hours to show the exact
correspondence with the original temperature, thus validating the Lie group analysis.

that it is totally accurate or complete. The model
needs extensive revision and validation in order to
accomplish 2 major goals
1. to include all common materials in any state
(day/night, rain/shine, etc.)
2. to find a model which is both accurate and
for which non-trivial invariants exist.
Since the current model clearly does not fully char-
acterize all of the data all of the time, this will be
our next step. However, it is likely that model
manipulations will not reveal the absolute invari-
ants we desire. Therefore, we must also continue
research into ways of finding quasi-invariants.

5.2 Quasi-invariants

From section 2.5 it was determined that any curve
in V(f) must satisfy the differential equation

d@;ig) _ (nz:: giw) (pc) wolD)=Z2  (6)

By curve fitting experimental data the vector

fields dwj—s(g) can be determined. Since the vec-
tor fields v; for ¢+ = 1,...,n — 1 are known an-
alytically, the scalar coefficients g; € C*(R") for
i=1,...,n—1can be determined. If (empirically)
there is an absolute invariant then at least one of
the coeflicients ¢; would have to be zero. This
would imply they lie in a subspace of the module
determined by the infinitesimal generators. This
could be the result of “overlooking” some physical
constraint that is not accounted for by our single
equation modeling the problem — the conservation
of energy equation. (One known condition we are
ignoring are any bounds on the variables.) Fur-
thermore the requirement that any curve satisfy
(6) can be used to determine “quasi” (slowly vary-
ing) invariants using elementary functional analy-
sis. Locally, if for normalized infinitesimal gener-
ators, the condition

lg'lloe < 6 (7)
for some ¢ is satisfied then a function ®(e) can
be determined such that ||M|| < & . These

types of invariants could be jus% as useful in prac-

tice as an absolute invariant.

6 Summary

The techniques of Lie group analysis provide a
powerful tool for determining absolute invariant
functions which can serve as classifier functions for
object recognition problems. We have applied this
analysis to the thermophysical invariants problem
and we have proven there are no (nontrivial) ab-
solute invariant functions for this model.
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